Epipolar geometry based sound localization and extraction for humanoid audition
نویسندگان
چکیده
Sound localization for a robot or an embedded system is usually solved by using Interaural Phase Di erence (IPD) and Interaural Intensity Di erence (IID). These values are calculated by using Head-Related Transfer Function (HRTF). However, HRTF depends on the shape of head and also changes as environments changes. Therefore, sound localization without HRTF is needed for real-world applications. In this paper, we present a new sound localization method based on auditory epipolar geometry with motion control. Auditory epipolar geometry is an extension of epipolar geometry in stereo vision to audition, and auditory and visual epipolar geometry can share the sound source direction. The key idea is to exploit additional inputs obtained by motor control in order to compensate damages in the IPD and IID caused by reverberation of the room and the body of a robot. The proposed system can localize and extract simultaneous two sound sources in a real-world room.
منابع مشابه
Real-Time Speaker Localization and Speech Separation by Audio-Visual Integration
| Robot audition in real-world should cope with motor and other noises caused by the robot's own movements in addition to environmental noises and reverberation. This paper reports how auditory processing is improved by audio-visual integration with active movements. The key idea resides in hierarchical integration of auditory and visual streams to disambiguate auditory or visual processing. Th...
متن کاملApplying scattering theory to robot audition system: robust sound source localization and extraction
Robot audition by its own ears (microphones) is essential for natural human-robot communication and interface. Since a microphone is embedded in the head of a robot, the head-related transfer function (HRTF) plays an important role in sound source localization and extraction. Usually, from binaural input, the interaural phase difference (IPD) and interaural intensity difference (IID) are calcul...
متن کاملReal-time sound source localization and separation for robot audition
Robot audition in the real world should cope with environment noises and reverberation and motor noises caused by the robot’s own movements. This paper presents the active direction-pass filter (ADPF) to separate sounds originating from the specified direction with a pair of microphones. The ADPF is implemented by hierarchical integration of visual and auditory processing with hypothetical reas...
متن کاملReal-Time Sound Source Localization and Separation Based on Active Audio-Visual Integration
Robot audition in the real world should cope with environment noises and reverberation and motor noises caused by the robot’s own movements. This paper presents the active direction-pass filter (ADPF) to separate sounds originating from the specified direction with a pair of microphones. The ADPF is implemented by hierarchical integration of visual and auditory processing with hypothetical reas...
متن کاملParallel processing in human audition and post-lesion plasticity
Recent activation and electrophysiological studies have demonstrated that sound recognition and localization are processed in two distinct cortical networks that are each present in both hemispheres. Sound recognition and/or localization may be, however, disrupted by purely unilateral damage, suggesting that processing within one hemisphere may not be sufficient or may be disturbed by the contr...
متن کامل